
Special Report
CMU/SEI-94-SR-00

Carnegie-Mellon University

- Software Engineering Institute

AD-A283 367I ilt El I !IU lIiil

Second Dependable
Software Technology Exchange

Charles B. Weinstock

Wafter Helmerdinger

June 1994 PT CS ELECTED
Au G19 1994

366

.. . .~ .



a

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment or adriinistralton
of its programs on the basis of race, color, national origin. sex or handicap in violation of Title VI of the Civil Rights Act of 1964. Title IX of the Educational
Amendments of t972 and Section 504 of the Rehabil•laton Act of 1973 or other federal, state or local laws, or executve orders

In additin. Carnegie MIlk'I tiniersitdy dmes not discriminate in admission. employment or adminsatrton rif its programs on the basis of religi"n. creed
ancestry. belief age. veteran status, sexual orientation or in violation of federal, state or local laws, or executive orders While the federal government does
continue to exclude gays. lesbians and bisexuals from receiving ROTC scholarships or serving in the military. ROTC classes on this campus are available to
all students

Inquiries concerning application of these statements s.ould be directed to the Provost. Carnegie Mellon Unirvsity, 5000 Forbes Avenue. Pittsburgh, Pa.
15213, telephone (412) 268-6684 or the Vice President for Enrollment Carnegie Mellon University. 5000 Forbes Avenue. Pittsburgh, Pa 15213 telephone
(412) 268-2056



Special Report
CMU/SEI-94-SR-06

June1994

Second Dependable
Software Technology Exchange

Charles B. Weinstock
Open Attribute Engineering Project

Walter Helmerdinger
Honeywell Technology Center

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced 13

Justification

BY.

L a Approved for pubic relese
A.IDstrbut•on unlimited.

Software Engineering Institute
Carnegie Mellon Utterly

Pittsburgh, Pennsylvania 15213



This report was prepared for the

SEI Joint Program Office
HQ ES.CENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, l., Col, USAF

SEI Joint fPrgm Office

This work is sponsored by the U.S. Department of Dfense.

Copyight 0 1994 by Carnegie Mellon University

This asWl may be reproduced by or for the U.S. Govement pursmtto the opyright license w the cau
a 52.M7-7013.

"MTis docuneMt Is avalable thog Resesrh Access, Inc., 800 V'ini Suteet, Pittwsgh, PA 15212.
Phone: 1-8M0-685-510. FAX: (412) 321-2994.

Copes of dhis docmueta avaiable shough t Ndlooud Tecical Informatiom Service (NTIS). fr foram.
don on orderng. pem rcoma NTIS &dl r. Natona TecbaiI tormudon Servic U.S. Depumem of
Commerce, S VA 22161. Phom C03) 487-4600.

"1Wis documut is also, avaible throh the Defne Technica hnformiom (D•fC). DIC ProIe sc-
e adl - u ofscnific•md c al iformfion fbrDoDimmu DoD conamn udpomntml o.-

tuctor, ad odt U.S., Govnmnt agency personnwl ad dedm coftractors. To obtain a copy, plese conact
DTIC dtudt. DefoeTuhical nbfomnon Cene. MAc FDRA, Coneron St•aton, Alexandris, VA 224-
6145. Phon: (703) 274-7633.

Use of my trademuks in ths repor is not intended in may way to ininge, on the rights ofth trademark holde.



Table of Contents

I Introduction 1

2 In-Process Measurement 5
2.1 Technology Lecture: Dr. Ram Chillarege 5
2.2 Application Lecture: Mr. Michael Daskalatonokis 7
2.3 Panel Discussion 9

3 Software for Safety-Critical Systems 13
3.1 Application Lecture: Mr. Kevin Driscoll 13
3.2 Technology Lecture: Dr. John Knight 15
3.3 Panel Discussion 18

4 Software Testing and Reliability 21
4.1 Technology Lecture: Dr. Ravi lyer 21
4.2 Application Lecture: Dr. Y'izak Levendel 23
4.3 Panel Discussion 25

5 The Tools Fair 29

6 Participants' Comments 31

7 Discussion 33

8 List of Attendees 35

CMUISEI-94-SR-4



H ~CMU/SEI-4-SA46



Second Dependable Software
Technology Exchange

Abstmct: On March 24 and 25, 1994, the Open Attribute Engineering Project
hosted the Second Dependable Software Technology Exchange. The
exchange, sponsored by the Air Force Phillips Laboratories, the Office of Naval
Research, and the Air Force Space and Missile Systems Center, brought
together researchers and system developers, providing an opportunity for the
researchers to learn the needs of the developers and for the developers to
learn about techniques being investigated by the researchers. This report
summarizes what transpired at the meeting.

1 Introduction

Dependability Is Important in avionics, vehicle control, logistics systems, and command, con-
trol and communications systems, to name but a few. As these systems Increasingly rely on
computers, software becomes more Important to the dependability and safety of their users.
Computer hardware has become more reliable, so software Is now the bottleneck for achieving
dependability. In recent years, however, a number of new approaches have emerged for build-
ing software for dependable system applications.

One way to facilitate technology transfer between researchers and practitioners Is to get them
talking to each other. With this mind, on March 18 and 19, 1994, the Software Engineering In-
stitute's Dependable Real-Time Software Project hosted the first in what Is hoped to be a se-
ries of Dependable Software Technology Exchanges. The second technology exchange was
sponsored by the Air Force Space and Missile Systems Center and the Office of Naval Re-
search.

The purpose of the exchange was to bring researchers and system builders together to pro-
vide an opportunity for technology transfer In both directions. System builders are often too
busy to attend conferences or to write papers; researchers need exposure to "real-world" con-
cerns. The technology exchange provided a forum In which each side could educate the other.

The exchange was coordinated by a steering committee consisting of

"* Dr. Charles B. Weinstock, Software Engineering Institute

"* Dr. Ravi lyer, University of Illinois

"• Dr. Walter L Helmerdinger, Honeywell Technology Center

"* Dr. Ram Chillarege, IBM T.J. Watson Research Center

"* Dr. Fred Schneider, Cornell University

CMU/EI-94-SR4-



The focus was on three topic areas deemed critical for achieving dependability: in-process
measurement, software for safety-critical systems, and software testing and reliability. Each
area was allocated a half-day session divided into 3 parts. The session started with an hour-
long presentation from a researcher followed by an-hour long presentation from an experi-
enced practitioner. After a short break, a 75-minute panel discussion was held. Each panel
consisted of the 2 speakers, plus up to 4 additional panelists. Audience participation was en-
couraged throughout the sessions. The technology exchange was videotaped.

A "tools fair" was held on the afternoon of Friday, March 25, with demonstrations by the Aero-
space Corporation, AT&T Bell Laboratories, and the Software Engineering ;nstitute.

By all accounts, the Second Dependable Software Technology Exchange was well attended
and successful. Of perhaps greater importance is the diversity of backgrounds represented by
the attendees. The almost 60 attendees represented organizations including

Industry * University of Illinois
"* Allied-Signal * University of Virginia
"* AT&T * University of Texas
"* Bellcore * University of York
"* Boeing e Wheeling Jesuit College
"* Cosgrove Computer Systems Government
"* Eli Lilly and Company * Air Force Office of Scientific
"* Honeywell Research (AFOSR)
"* International Business Machines * Federal Aviation Administration
* Lockheed Missile and Space (FAA)"* Loral Federal Systems * Institute for Defense Analyses
"L Microsoft (IDA)

"" National Institute of Standards
"* Motorola and Technology (NIST)
"* Raytheon * Naval Surface Warfare Center

"* System Technology (NSWC)
Development Corp. * Office of Naval Research (ONR)

"* Trident Systems * Air Force Safety Center
"* Union Switch & Signal * Phillips Laboratories
"* UniView Systems * Sandia National Laboratories

Academia Other
"* Carnegie Mellon University e Aerospace Corporation
"* Cornell University 9 MITRE
"* Ellendel/Stockholm University o Software Engineering Institute
"* University of California 9 SRI International
"* University of Cincinnati

We clearly achieved our goal of bringing researchers and practitioners together.

2 CMU/SEI-94-SR-6



At the end of the technology exchange, attendees completed a feedback form to help us eval-
uate the success of the meeting. Although not every respondent found all of the talks useful,
every talk was useful to some of the respondents. Virtually every respondent was enthusiastic
about holding further technology exchanges-a variety of topics were suggested.

The next sections describe the three sessions in detail, including the speakers and panelists
as well as a summary of each discussion. Following those sections is a synopsis of the com-
ments from participants. A complete list of attendees appears as an appendix.

CMU/SEI-94-SR-6 3



4 ~CMU/SEI-9-SR-6



2 In-Process Measurement

The morning session of Thursday, March 24, 1993 focused on in-process measurement. Dr.
Ram Chillarege from IBM's T.J. Watson Research Center gave the technology lecture and Mr.
Michael Daskalatonakis of Motorola's Cellular Infrastructure Group gave the application lec-
ture. In addition to these speakers, the panel consisted of Dr. Michael Lyu of Bellcore, Mr. Tom
Gilchrist of Boeing Commercial Aircraft, and Mr. Roger Sherman, director of testing at Mi-
crosoft. Dr. Chillarege coordinated the session.

2.1 Technology Lecture: Dr. Ram Chillarege

Chillarege began his lecture by stating the goal of defect-related in-process measurement and
analysis: to identify areas in a product that need corrective action while the product Is still in
development. He noted that the step in which defect information is fed back into the software
product development process is the weakest part of the software quality life cycle today. He
observed that process measurement and analysis spans a spectrum from statistical defect
models that are abstract, mathematical, and often not relevant to the needs of the programmer
to root-cause analysis that is qualitative, down-to-earth, and represents the programmer's pro-
spective. Chillarege then introduced orthogonal defect classification (ODC), an approach that
brings the extremes together.

He noted that software defects have a life cycle that begins with the injection of an error. The
error escapes inspection and then escapes testing, remaining dormant until It creates a fault,
which leads to a failure. The defect defies Identification until a "fix" is incorporated into the
product. He noted that defect data is collected at each stage in this life cycle, but the data is
neither uniform nor consistent because the classifications used vary depending on the stage
in which the data is collected. He noted that defects discovered in software inspections are
usually classified as major or minor. Accurate defect data is rarely available from unit test ac-
tivities, as programmers are reluctant to provide data from this activity - often defect statisti-
cians guess data in this stage. Functional testing usually yields good data, as does system
testing. Defects discovered in these stages are usually classified In terms of three or four se-
verity levels. Field data uses a different classification, usually based on severity.

Chillarege summarized the traditional approach for defect analysis that deals only with the
number of defects, analyzing either cumulative defects over time or defect density over time.
In this approach, the analyst searches for a knee In the defect curve that supposedly indicates
the point at which few new defects are found and the product is "mature." However, the knee
of the curve may only indicate the cessation of testing, and a significant number of defects may
remain in the product.

CMU/SEI-94-SR-6 5



He contrasted this approach with an alternative analysis approach that measures progress by
examining the distribution of defects, thereby extracting a "process signature." This approach
is embodied in ODC, which he defined as "a semantic classification on defects, such that they
collectively (in their distribution) explain the progress of the product through the process." Fur-
thermore, the distribution can also point to thb .art of the process needing attention.

Chillarege explained that ODC requires a set of defect classes that can be related to the pro-
cess, and therefore used to explain the progress of the product through the process. Addition-
ally, the set of all values of defect attributes should form a spanning set over the process
subspace. He then explained how ODC achieves this by grouping defect attributes into five
attribute classes: defect type, trigger, source, environment, and impact.

The defect type attribute is associated with activities in the software process. Typical types are
missing and/or incorrect: function, interface, checking, assignment, timing/serialization,
build/packing/merging, documentation, and algorithms.

The trigger attribute relates to the condition that forces a defect to surface (the catalyst for de-
tecting a defect). Typical triggers include: workload/stress, recovery/exception conditions,
startup/reset, timing, hardware configuration, software configuration, or execution mode. Oth-
er triggers are boundary conditions, bug fixes, and customer code.

Source type attributes might include: old functions, new functions, reused code, rewritten
code, repai.ed code, vendor-written code, or scaffolded code. Other source types may identify
particular customer sites.

Impact type attributes gauge the effect of the defect. They might include: capability, usability,
performance, reliability, installability, maintainability, documentation, integrity/security, and
standards. The first seven criteria, referred to by their initial letters CUPRIMD, are used in IBM.

Chillarege then discussed how triggers can indicate the effectiveness of the various inspection
and test activities. For example, if the distribution of triggers from a system test does not mimic
the distribution ,rom field reports, the system test process should be revisited. He noted how
trigger distributiors from reviews or inspections can be used to assess the skill of the inspec-
tors. He recounted a situation in which data from an inspection of a major product showed very
few interface defects, indicating a lack of interface skills in the inspection team. A subsequent
inspection of the product by an experienced analyst uncovered over 200 interface defects.

Chillarege showed how associations between defect type and process stage can be used to
gauge product maturity. He illustrated how function defect data can be fed back into the design
process by exposing weaknesses in the various life-cycle stages and by indicating the need
to revamp a particular stage of a product.

6 CMU/SEI-94-SR-6



Chillarege concluded by noting that a defect control program could complement a defect pre-
vention program. Hot spots discovered In the defect control program could be used to launch
the defect prevention program in the right direction. Once the prevention program has taken
an action, the defection control program can measure the response and use the experience
to locate similar defects.

2.2 Application Lecture: Mr. Michael Daskalatonokis

Michael Daskalatonokis of the Motorola, Inc. Cellular Infrastructure Group delivered the appli-
cation lecture on in-process measurement. He began by emphasizing that measurement is not
a goal in itself - the real goal is to make the software development process faster (reduced
cycle time) and cheaper (greater productivity) and to make the product better (higher quality).

Daskalatonokis noted that metrics at Motorola are targeted at individual audiences that each
have specific interests. For example, senior managers are interested in overall improvement
across projects, software managers are more interested in Improvements in their individual
projects, and individual software engineers are interested In improving specific project activi-
ties and work projects. Historically the Motorola metrics program began at the corporate level
and migrated down to the project level.

Daskalatonokis showed metrics charts aimed at executives that summarized five sets of data:
(1) software process and product quality, as measured by in-process faults and defects per
thousand lines of assembly-equivalent code; (2) customer satisfaction, as measured by cus-
tomer-defined attributes, such as features, reliability, availability, billing, and documentation;
(3) cycle time/productivity, measured by the calendar time required to develop new or en-
hanced software and code produced per person-month; (4) progress in implementing software
engineering technology, measured by a multiaccess comparison of progress toward goals in
project management technology, development technology, etc.; and (5) progress in meeting
the Motorola corporate goals of SEI software capability maturity level 3 by 1995 and level 5 by
1998, measured by progress in each of the SEI key process areas.

Daskalatonokis then showed 10 sample charts that would be used by the quality managers of
a Motorola division. Each of the 10 sample grapt!s showed one or more software metrics for
a 5-year period. The first 3 charts dealt with software defects - in-process software defects,
total released defects, and defects found by customers, displayed on a logarithmic scale that
made it easy to track quality in terms of sigma. Daskalatonokis noted that Motorola had adopt-
ed a corporate goal of attaining a 6-sigma quality level (3.4 defects/million units) in both hard-
ware and software. Other sample charts displayed the number of post-release problem reports
(both new and cumulative), post-release problem report aging (the average cycle time re-
quired to close out both open and closed problem reports), cost to fix post-release problems,
total defect containment effectiveness (the portion of the total faults in a software product life
cycle found before customer release), the defect containment effectiveness of the major de-

CMU/SEI-94-SR-6 7



velopment phases (requirements definition, high-level design, low-level design, and coding),
the ratio between estimates of schedule and effort and actual values, and both incremental
and cumulative productivity in K-lines of code per person-month.

Next, Daskalatonokls showed examples of metrics that could be used to plan and control each
of the major software life-cycle processes: project management, requirements definition, de-
sign, coding, inspections/reviews, and testing. Daskalatonokis exhibited a number of in-pro-
cess metrics, while emphasizing that a given project with Motorola would use only a small
subset of the metrics presented (and possibly some metrics not presented).

The sample management metrics displayed a timeline of items completed (development phas-
es or modules) or resources used (personnel, earned value, disk space, or target systems).
Much of this data is collected automatically (staffing information is extracted from engineer
time records, disk usage from the file system, target system usage through e-mail from an au-
tomated collecting tool).

Requirements metrics included timelines of the number of requirements and the number of
changes to requirements during a project. Such metrics are in use for Iridium, a project large
enough to provide meaningful results. Other sample requirements metrics track the type of
problem leading to changes (omission, commission) and the source of changes (marketing,
customers, system developers, or software developers).

Metrics for coding are not widely used by Motorola. Daskalatonokis discussed the relative sys-
tem complexity (RSC) metric and McCabe's cyclomatic complexity metric, which are not used
much at Motorola, and Halstead's software science, which is used in a few areas in Motorola
(i.e. the Paging Division) with good accuracy in estimating defects to be found.

Daskalatonokls's sample metrics for software inspections focused on the results (density of
faults found) and the productivity (number of lines of source code per hour) of individual in-
spections. Both of these charts must be interpreted using limits based on experience. Other
sample inspection metrics dealt with rework cost savings, fault severity, and the reasons for
faults found in code inspections.

Testing metrics considered both testing effort, measured in the number of test cases estimated
and completed, and testing results, measured In terms of the number of failing test cases.
Daskalatonokis discussed the Ralph Brettschnelder criterion for releasing software, a model
used widely by Motorola, especially in the communications sector. The model, discussed In
more detail in a July, 1992 issue of IEEE Software', estimates the number of hours that testers
should continue testing without finding defects to achieve a desired number of post-release
defects, given the number of defects found to date and the total test execution hours to date.

I. Sheldon, F.T., et. al. "Reliability Measurement: From Theory to Practice," IEEE Software (July 1992): 13-20.

8 CMU/SEI-94-SR-6



In summarizing his experiences and lessons learned at Motorola, Daskalatonokis discussed
a number of obstacles to be overcome in an in-process metrics program, including an Initial
lack of tools to automate metrics, fear of extra cost and overhead, fear that data will be used
as a weapon, especially if other projects do not report data consistently, and a lack of expertise
on the use of metrics for in-process planning and control. Factors critical to the success of an
in-process metrics program include: gaining senior management support, addressing the
needs of all metrics audiences, allowing groups to tailor their own metrics, using a staged im-
plementation approach with multiple short-term projects as pilots, identifying a champion for
the metrics effort, providing ongoing training and consulting, and extracting metrics from tools
that are already used by projects. The essential element is that engineers and managers must
be the owners and users of the metrics data. This can be done by providing them with sample
reports, encouraging them to create their own reports, and then revising and automating these
reports. If this is done, in-process metrics can help Improve project planning and tracking and
can establish a historical baseline for long-term improvement.

Daskalatonokis concluded by re-emphasizing that measurement is not the goal--the goal is
improvement through measurement, analysis, and feedback.

2.3 Panel Discussion
The panel discussion period began with short presentations from each of the panelists that
were not lecturers.

Michael Lyu presented nine obstacles to software quality:

1. Quality is perceived as a cost, not as value.

2. Software quality is accorded a low priority because features and functions
bring revenue.

3. Customers have a high tolerance of poor software quality.

4. There Is a lack of a "problem"-a crisis is needed before improvement
initiatives can be taken.

5. There Is a lack of reasonable and verifiable software quality specifications
derived from user requirements.

6. The pursuit of quality delays product schedule and increases cost.

7. There is high turnover in the permanent staff that works on improvement
activities.

8. Data collection consumes resources and is confusing, offensive, and error-
prone.

9. Intrusive monitoring is unacceptable, but monitoring without intrusion is
Impossible.

He then posed nine issues and questions:

CMU/SEI-94-SR-6 9



1. Can we learn from other industries (e.g. automotive)?

2. How to tailor the measurement processes Implemented in other companies.

3. How to define software quality metrics that make sense to managers.

4. How to collect data accurately and painlessly.

5. How to analyze and interpret data to gain useful insights.

6. How to make continuous quality Improvement a cost-effective process.

7. Should we settle down for continuous improvement or search for major
leaps?

8. What techniques have proved to significantly improve software quality?

9. How to attract the best people to do measurement work.

Tom Gilchrist of Boeing began with an observation that a major problem is the disagreement
between management and the people doing the work and creating the value.

He reiterated two quotes on systems and organization. The first, by Tom Glib: "A system tends
to grow in terms of complexity rather than simplification until the resulting unreliability becomes
intolerable." The second by Ron Nelson: "Left to their own, organizations tend to migrate to-
ward individual practice."

Gilchrist then contrasted measurement without feedback (which he characterized as "man-
agement for the curious") with control without measurement (which he characterized as "royal
dictates").

He then presented two models of the software development process: a single-engine model
and a two-engine model. The single-engine model follows a process that converts needs and
constraints into deliverables. Action in this process is induced by a cycle that compares exit
criteria with values under the influence of triggers, business objectives, and constraints. This
model has no memory and can be uncontrollable If cycle times are longer than 4-6 weeks. The
two-engine model has an engine to maintain and improve the process coupled with an engine
to use the process.

Finally Gilchrist observed that people who collectthe metrics must use the metrics, otherwise
a situation may occur in which people write programs to add lines of code to their products.

Roger Sherman of Microsoft stressed three points. First, he mentioned the importance of reli-
ability. He stated that although no one ever died from a bug in Microsoft's Flight Simulator, Mi-
crosoft Is driven by profitability, and a recall of a product to fix a bug can destroy profit,
especially If the product Is widely distributed, like Windows, with 55 million copies in use. Next,
he stressed the Importance of process. He contrasted the measurement of process with the
measurement of the state of product. He noted new trends in software development, Including
larger teams (200 people for Excel/Word, 75 of which are developers) and developers who are
unlike the users they serve (60% of Microsoft sales are outside of the US).

10 CMU/SEI-94-SR4



Finally, Sherman outlined the use of metrics at Microsoft. He noted that product teams are al-
most completely autonomous, even to the point that they have their own process, and that se-
nior management generally does not access metrics.

The panel then addressed questions from the audience.

Roy Maxion of Carnegie Mellon University observed that most obstacles are social and asked
how they should be addressed. Sherman replied that it is important to define your goals, as
quality means different things to different people. Lyu added that cultures change with time
and that culture shouldn't be allowed to hide technical excellence. Gilchrist claimed that the
major issue is goals - how many "Sunday school truths" (truths observed only on Sunday)
are in an organization. He noted that goals are complex. He also recalled that Deming stnt es
that a customer relationship must be win-win - artifacts don't make the difference if att-
do not change. 100% inspection (and test) is not enough.

Michelle Hugue of Trident Systems commented on work with a major accounting firm known
for Its expertise in quality that encountered obstacles that could not be surmounted, in part be-
cause of to many hidden agendas.

Yltzak Levendel of AT&T countered that the problem is technological, not social. Because we
don't have the technology, we don't know how to separate human behavior from the machin-
ery. Michael Daskalatonokis replied that cultural Issues still make a difference in adopting met-
rics.

Ravi lyer commented that he sees major issues in high-speed communications software, but
doesnl hear of any technical issues. Chillarege replied that every effort to reduce software de-
velopment to a "mechanical" activity (by reducing variance etc.) has not been successful be-
cause software is not the same as automobile production. He stated that he knew of two cases
that reached the 6-sigma quality level (3.4 errors per million source lines of code). Chiliarege
stated that we don't know the "thermodynamics" of software because we do not have a model
yet. Nevertheless, metrics still provide useful Insight. He stated that practitioners are seeking
a way to produce value in a business in which the tools to produce software in a short time are
Improving rapidly.

CMU/SEI-94-SR-e 11



12 CMU/SEI-04-SA4



3 Software for Safety-Critical Systems

The afternoon session of Thursday, March 24, 1994 focused on the problem of developing
software for safety-critical systems. Mr. Kevin Driscoll of the Honeywell Technology Center
gave the application lecture. The title of his talk was "A View from the Trenches-Software
War Stories." Prof. John Knight from the University of Virginia gave the technology lecture. The

title of his talk was "Safety-Critical Software Technology Issues." In addition to these speakers,
the panel consisted of Dr. Walter L. Heimerdinger of the Honeywell Technology Center, Mr.
Mike DeWalt of the Federal Aviation Administration, Mr. Lynn Elliott of Cardiac Pacemakers,
Inc., and Prof. John McDermld of the University of York. The session was coordinated by Dr.
Heimerdinger.

3.1 Application Lecture: Mr. Kevin Driscoll

Developing safe software is a difficult business. This is especially true for the control systems
that must Interact with an environment by sampling inputs and periodically emitting outputs in
accordance with some time base.

According to Driscoll the five common causes of unsafe software are

1. Incomplete requirements

2. Non-deterministic design

3. Inadequate testing

4. Improper use

5. Interdisciplinary "cracks"

Driscoll's discussed these five points.

Driscoll noted that a design at a particular level of detail provides requirements for the next
lower level of detail, with each successive level linked by rationales and compliance audits.
Echoing the requirements talk at the previous Dependable Software Technology Exchange,
Drsicoll said that the major difficulty with requirements is that all of the assumptions aren't writ-
ten down, particularly assumptions about the physical world. This can lead to situations In
which the designer makes one set of assumptions and the programmer or ultimate user makes
another conflicting set of assumptions. Furthermore, given the ambiguity Inherent In English,
even explicit requirements are open to misinterpretation. In either case the result can be an
unsafe system.

A deterministic design makes it possible to understand what a system will do (that is, what per-
ceptible outputs will be produced) in the presence of certain Inputs. In a non-deterministic sys-
tem, a system's future behavior cannot be accurately predicted from its current behavior.
Drlscoll claims that an unpredictable system cannot be called a safe system.

CMU/SI-94-SR-6 13



Driscoll feels that most testing is inadequate because it doesn't look for unintended function-
ality. Unintended functionality is usually latent. Of course, testing for all possible unintended
functionality would require an infinite amount of testing. As an example, Driscoll illustrated the
misuse of a SETBIT function in Fortran. The designer and implementer had different views on
how the function was to be used, and the result was that an unintended bit in memory was
being set and cleared. Initially this went undetected because the bit was in an "uninteresting"
location in memory. When some totally unrelated code that changed the distance to the target
of the SETBIT function was modified, the bit ended up in an "interesting" area, and the system
failed.

Drscoll said that testing is good at catching permanent faults, but less effective at dealing with
intermittent and latent faults. Low probability faults are difficult to find but can occur often
enough in a large installed base to be a significant problem. As an example Driscoll cited the
case of an autopilot that would intermittently jump in altitude every couple of years. Over the
installed base, there were three incidents per month. They never found the problem.

Drscoll also used an autopilot example to illustrate how misuse can make a system unsafe.
Pilots tend to rely too much on the autopilot, using it to climb or descend instead of flying the
plane themselves. This was not the intended use for the autopilot. When the operators place
more reliance on a digital system than was intended, the result can be an unsafe system. This
raises the question of whether the designer should be responsible for the new uses of the ap-
plication.

As another example, related to misuse, Driscoll cited the human Interface on the Airbus A320
in which a crash was traced to the pilots' confusion between vertical speed and the flight path
angle.

Driscoll noted that the apparent dichotomy between synchronous and asynchronous systems
is not as sharp as might appear; instead synchronism can appear at a number of levels, rang-
ing from the micro-cycle clock level to the instruction level and higher levels, such as major
frames and external events. According to Driscoll asynchronous designs should never be
used for safe systems. In particular he feels that special care must be taken when software
interacts with hardware; for this reason interrupts should be avoided. As an example of the
problems this can lead to, Driscoll showed how updating a linked list the "wrong way" in the
presence of interrupts could lead to an infinite loop. In the system from which this example was
taken, the infinite loop was in the microcode, and it was necessary to remove power from the
system to perform a reset Because of the asynchronous nature of the system, this occurred
only about once a day and was extremely difficult to find. Driscoll had several other examples
of how interrupts and asynchronism could lead to unsafe systems.

Driscoll asserted that the system designer also must know the application environment As an
example he showed the calculations needed to compare the outputs of two sensors for a, the
aerodynamic angle of attack of an aircraft. One of the principle reasons for using two sensors
is to be able to detect a failure In one of the sensors by noting when the difference between
the values provided by the sensors exceeds an error threshold. Unfortunately, the value for an

14 CMU/SEI-94-SR-6



appropriate error threshold is not constant; instead it will depend on a number of conditions,
including the location of the aerodynamic center of the aircraft (which Itself is not a constant),
the pitch rate, the radius of each sensor from the aerodynamic sensor, etc. A software engi-
neer without extensive domain knowledge would not be able to make this determination accu-
rately.

Driscoll concluded by emphasizing that system safety rather than software safety must be the
goal. This can be achieved only If a system is built by "real" systems designer/architects--peo-
ple with knowledge of a number disciplines. They are needed to compensate for narrow spe-
cialists who do not communicate adequately.

After reminding the audience that most catastrophic failures result from the hardware/software
Interactions and design/specification errors, he reviewed contemporary practices that Impede
the development of safe software:

"* Incomplete and constantly changing specifications.

"* The misconception that safety is a result of quality, which can be realized by
sufficient testing.

"* The lack of a central system architecture for most systems.

"* Poor communications between the numerous disciplines required to
implement a system.

"* The Inevitable cost and schedule constraints under which most systems are
developed.

3.2 Technology Lecture: Dr. John Knight

Knight began his lecture by observing that safety-critical applications are everywhere. In ad-
dition to the commonly thought-of nuclear, medical, and aerospace applications, Knight
claimed that we must broaden the definition of %safety" and add financial, service, and con-
sumer applications. To emphasize this point, he discussed a failure at the Bank of New York
that shut down bond trading and caused the bank to lose a lot of money. This was certainly
unsafe to the health of the bank. Yet, he noted, we have a very difficult time building systems
that meet the required level of assurance. For Instance the often-cited requirement that the
probability of failure must be less than 10"9 per hour of operation cannot routinely be met. Yet,
In many situations this is a reasonable requirement, because these systems are replacing
hardware systems that were that good, and we're not prepared to have a system that is less
safe.

Knight echoed Driscoll and claimed that specification Is the first problem. Most errors are
caused at the front end of the life cycle. However, most errors are foundat the rear end of the
life cycle. This suggests that software engineers are good at what they do and that many prob-
lems are created in the specification process. Especially difficult is when the customer revises
the requirements toward the end of the development.

CMU/SEI-94-SR-6 15



Knight described two important roles in the implementation of a safety-critical system--appli-
cations engineers understand the functions required of the system as well as the attendant
hazards and risks, while software engineers understand the structuring, implementation, and
analysis of software. He asserted that software engineers, whlii good at what they do, are not
qualified to answer applications engineering questions. We certainly don't want the software
engineer to decide what to do with an unspecified input. Hazards, risks, etc., must be handled
very carefully in software specification. Knight says that if we are not extremely careful, some-
thing will fall through the cracks and the result can be catastrophic.

What we need, according to Knight, is to use more precise specifications. This requires some-
thing more than natural language, and, as John Rushby discussed at the previous exchange,
formal (or semi-formal) languages are an appropriate choice. Data flow diagrams, Z, and Vi-
enna Development Method (VDM) are all examples of ways to communicate more formally
than with English.

But, Knight said, there is a problem. Although engineers accept formal notations like "C" and
the calculus, they are not quick to adapt to formal mathematics. At least partially, this is caused
by a lack of production-quality tools to support formal methods. Furthermore, the fact that there
is no single notation that is comprehensive requires the user to understand and use several
different notations. Also, certain things are extremely difficult to specify including realtime,
computer arithmetic, and user Interfaces. But, Knight feels that formal specifications are the
best hope, the techniques are not that difficult to apply, and there already is an extensive base
of industrial experience in the use of formal methods including the Darlington Nuclear Gener-
ating System, the Paris Metro signaling system, and the Traffic Collision and Avoidance Sys-
tem (TCAS).

Knight then recounted an approach followed at the University of Virginia in which a formal no-
tation (Z) was selected and used to document the results of a system fault tree analysis. Un-
fortunately, the result was unsatisfactory-an ad hoc process with no guarantee of
repeatability. The team then developed an approach to separating software concerns and sys-
tems engineering concerns and to separating software safety and specification safety by mod-
eling the flow of information through the overall system. As a result, Knight felt that they have
developed a process that is rigorous, repeatable, and dependable, that works with real-world
problems, and that applies to a wide spectrum of systems at many levels of formality.

Knight then went on to talk about the design and Implementation phases of developing safe
software. He started by discussing how reuse can provide more benefits in terms of increased
dependability than it provides toward the more traditional goal of increased productivity. The
key idea is that if we reuse something, we don't have to verify It again ff we are careful. This
means that spending a lot of time verifying it the first time might be cost effective. This only
works with systematically planned reuse, not with opportunistic reuse, and is likely limited to
reuse in a particular domain. He noted that systematic reuse must span the entire software life
cycle, including specifications.

16 CMU/SEI-94-SR-6



According to Knight, the programming language chosen can have a big impact on system
safety. Even If we verify the source code, we are still dependent on the compiler, libraries, link-
er, and runtime system. Knight contrasted Ada 83 and C++. Ada has many language benefits
for safety-critical applications including type checking, use restrictions, constraint checking,
etc. But Ada has holes such as exception handling and precise and rigorous, but not very use-
ful, time semantics. Ada 9X will solve some of the existing problems, but the result still won't
be perfect for safety-critical system development.

C++ is another popular language that, according to Knight, should not be used in any applica-
tion requiring dependability. There are several problems. Although a very powerful language,
C++ is based on C. C has some very insecure properties such as its significant dependence
on pointers, and relatively poor type checking. Pointers encourage programmers to "throw
around" machine addresses as variables. Furthermore, Knight said, a great deal is hidden
from the programmer, Including the use of constructors and virtual function resolution. There
is no precise definition, and there Is never likely to be one. On the other hand, the program-
structuring benefits of the class mechanism are considerable.

Knight went on to discuss verification through testing and some of the problems that occur.
Many systems are difficult to test at best. For instance, graphical user interfaces present real
problems if humans have to do the testing manually. Repeatability becomes a problem. Real-
time systems are difficult to test without disturbing the system, and the tests are difficult to re-
produce. Distributed systems suffer from many of the same difficulties. In general, Knight says,
we have a problem telling whether an output Is correct and whether the test input profile
matches the operational profile. Knight also raised the Issue of nondeterminism.

According to Knight verification through inspection is a very powerful tool. Inspection tech-
niques include formal Inspections, active design reviews, and phased Inspections. The data is
so overwhelming that inspection is both effective and cost effective and works in all of the life-
cycle phases.

Another technique that Knight discussed was verification through proof. There are simple but
useful properties that can be proven very easily, such as the absence of Infinite loops, freedom
from some forms of deadlock, etc. The key here Is that If you can prove it, you don't need to
test for it.

Knight had some criticisms of the role that standaids play in dependable systems. The first
criticism Is that there are too many standards. According to Knight, we should ask ourselves

"* Who wrote the standards and were they divinely Inspired?

"* What does the standard mean (i.e., Is It precise enough?)

"* Has the standard been tested?

"* How can one tell If one has complied with the standard?

"* What does compliance really buy?

CMU/SEI-94-SR-6 17



Knight gave some examples of problems with standards based on the United Kingdom's
MOD-00-55 standard.

Knight closed his presentation with a discussion of dependability assessment. Here he talked
about two concepts, life testing and reliability growth models. Most life testing is based on
models for hardware that don't exist for software. For ultra-dependable systems, such assess-
ment is infeasible (it takes too long to observe a system that has a failure probability of 10"9).
Worse still, Knight said, current software models presume perfect error detection. Not noticing
that a system has failed during a test makes the problem much worse and leads to reliability
estimates that are much too high.

Assessment through reliability growth models involves executing a program until it fails, repair-
ing it, and the repeating the process, keeping track of mean time between failures (MTBF),
which presumably increases. Knight says that this is an interesting technology but that its utility
is unclear.

3.3 Panel Discussion

Following the presentations there was a free-form panel discussion with much interaction with
the audience. Presentations by the panelists were eliminated to provide additional time for au-
dience interaction.

Ram Chillarege asked the panelists what they thought were the current best practices in soft-
ware safety. The general consensus was that safety analysis should be performed at the sys-
tem level, not at the component level, and that domain experts were necessary. Also, much
emphasis is placed on simulations. Mike Dewalt mentioned that the FAA is trying to change
emphasis from process (e.g., DO1 78B) to the analysis of critical system properties.

In a brief interchange regarding reuse, it was pointed out that there is no significant reuse at
the architecture level. It was also pointed out that reuse often presents problems at interfaces
unless the system was designed with reuse in mind.

John Knight followed up his comments about C++ with some specific examples of why he con-
siders C++ to be a poor choice for safety-critical software. Although it does many things well,
there are some constructs that are extremely error prone [for example, writing "if (a = b)" when
what was really meant was "if (a - b)j. Ada 9X doesn't solve the problems. it has only single
inheritance, and it hasn't fixed the Ada exception-handling problems. Art Robinson proposed
using an Ada subset, but the consensus seemed to be that this was too limited for most appli-
cations. It was pointed out that there have been no airworthiness directives Issued that could
be traced to compiler or language problems. It was also pointed out that if you design properiy
up front, it probably doesn't matter what language is used.

John Rushby then turned to formal methods and pointed out that an early commitment to for-
mal methods means that you have a description early in the life cycle that can be analyzed.
John Knight talked about the difference between formal methods and formal notations. People

18 CMU/SEI-94-SR4



often refer to a notation as a method. Formal specifications make us think carefully, which re-
sults in a means of communication. Mike Dewalt discussed Nancy Leveson's TCAS example
and mentioned that she was unable to derive safety properties from the formal specification.
Rushby was skeptical of the social benefit of formal ntation without analysis. Michelle Hugue
mentioned that formal methods can be used as a discovery tool.

Stephen Johnson turned the discussion toward system-level concerns. In particular, he was
concerned that most people do hardware or do software, but do not take a system-level ap-
proach to dependability.

Chuck Weinstock asked Lynn Elliott how safety practices differ between the aerospace com-
munity and the medical electronics community. He responded that availability was a key fea-
ture of the systems with which he deals. The system may sit dormant for months at a time and
then be required to give the heart a jolt on a moment's notice. They spend a lot of time simu-
lating various situations. Since their products are embedded in the human body, they have to
contend with the fact that each body presents a different environment. There are also sivere
physical space limitations. The software for the system Elliott described is about 75,000 lines
of code.

Elliott also pointed out that they need a low defect rate and can't reasonably recall the product.
This has led them to reduce complexity by removing features that are not absolutely required.
Surprisingly there is no formal fault tolerance in the system (beyond built-in memory checking),
in part because of the need to minimize the amount of code and consequent energy (battery)
consumption.

Joe Marshall then turned the discussion to the asynchronous versus synchronous issue and
asked about the place of interrupts in a safety-critical system. Kevin Driscoll reiterated that he
believed that there was no place for interrupts in a safety-critical system. He feels that there
should be (at most) two interrupts: the clock and a fatal interrupt. John Knight pointed out that
the main problem with interrupts is that they result in a context switch that makes analysis dif-
ficult. No interrupts leads to simpler analysis, but there are tradeoffs. Synchronous systems
are harder to design.

For the last question, the panel was asked when they thought that the 10-9 failure probability
would be achieved. Kevin Driscoll said that it was a matter of demonstration only. Walt He-
imerdinger and Mike Dewalt said that the number is meaningless for software (but reasonable
for hardware). Dewalt says that we are lucky to support 10-6 to 10 "7. Knight reiterated that the
10"9 originated from the fact that we were replacing hardware with software. He feels that there
is plenty of room for expert systems, etc., which don't have to meet the 10-9 failure rate.

CMU/SEI-94-SR-6 19



20 CMU/SEI94-SR46



4 Software Testing and Reliability

The morning session of Friday, March 25, 1994 focused on software testing and reliability. Dr.
Ravi lyer of the University of Illinois gave the technology lecture. The title of his talk was "is-
sues in Software Testing and Reliability." Dr. Yitzak Levendel of AT&T Bell Laboratories gave
the application lecture, "A Success Story: Ten Years of Software Quality Improvements or the
Tunnel at the End of the Tunnel." In addition to the speakers, the panel consisted of Dr. Micha-
el Dyer of Loral Federal Systems, Mr. Bliss Jensen of AT&T, Dr. Steve Bunch of Motorola, and
Dr. Jacob Abraham of the University of Texas at Austin. This topic area was coordinated by
Dr. lyer.

4.1 Technology Lecture: Dr. Ravi lyer

lyer began his talk by contrasting hardware testing with software testing. He noted that hard-
ware testing is primarily concerned with physical faults. Hardware fault models, he said, are
simple, proven, and are supported by public domain tools that have been validated by years
of experience, while software faults are design faults for which there are no generally accepted
fault models. lyer observed that software development typically begins with a base of millions
of lines of code and adds hundreds of thousands of lines of additional code for each new fea-
ture implemented. He quoted an estimate by an official of Boeing that the Boeing 777 airplane
would fly with over 4 million lines of code. He stated that the challenge in such an environment
is to implement changes while maintaining software quality and remaining competitive in both
cost and time to market. The usual approach Is to focus on testing, relying heavily on regres-
sion testing to maintain existing quality and attempting to maximize test efficiency in terms of
coverage, cost, and automation.

lyer reminded the audience of the increased costs associated with finding an error later in the
software life cycle. Not only does testing become more complex and costly at later stages in
the development cycle, but change documentation becomes more widespread and costly,
more people are involved In locating the problem and making changes, and more regression
testing Is required. Furthermore, once system operation begins, the development team may
no longer be available. lyer illustrated how the quality of a software product depends on the
user in the case of a telephone switching system. Subscribers expect available dial tones, re-
liable connections, and no lost calls; operating staff expects to install new features without ser-
vice disruption while minimizing human error; accountants are concemed with billing
accuracy, and maintenance programmers need good documentation, software that conforms
to specification, and dependable repair methods and tools.

lyer began a discussion of approaches for achieving quality software by listing a number of
techniques for defect prevention, Including top-down design and implementation, bottom-up
design and implementation, modular design and programming, structure design and program-
ming, defensive design and programming, automatic programming, design representations,
design and programming tools, and formal methods/proofs. He singled out cleanroom soft-

CMU/SEI-94-SR-6 21



ware engineering as a radically different approach that Is claimed by some to be highly effi-
cient. Bugs are removed by analyzing the software with correctness proofs instead of
execution tests - no execution of the software takes place until the software is deemed ready
for shipment. Thus, testing is used to certify that the software product meets requirements in-
stead of looking for bugs.

lyer then addressed the second approach for achieving quality software, defect removal. This
approach includes both passive methods and active methods. Examples of passive methods
include: requirements specification, design or code reviews, pseudolanguage analysis, formal
verification, and symbolic execution. Testing is an example of an active method. He reviewed
the hierarchy of tests for a telephone application, with white box testing (unit test and intra-
feature test) at the bottom of the hierarchy, followed by black box testing (integration and inter-
feature test), system and network level test, performance and capacity test, first office appli-
cation test, and customer acceptance test.

lyer contrasted the two primary software testing methods, functional testing and structural test-
ing. He noted that functional testing checks for defects in computation (overflow, underflow,
loss of accuracy), data handling, interfaces, concurrency, synchronization, and for perfor-
mance at specified levels and under stress. Structural testing includes path testing, data-flow
testing, integration testing, and mutation testing. Path tests are selected to exercise every
statement or instruction at least once, exercise each option of every branch or case statement
at least once, or exercise every path from entry to exit. Data-flow testing selects test paths in
a program's control flow based on the definition and user of data objects.

Integration testing tests for errors not discovered during unit testing, including missing func-
tions, extra functions, and interface errors. lyer mentioned an experiment on integration con-
ducted by Solheim in 1993 that analyzed the number of defective modules remaining in a set
of 15 artificial software systems. He also discussed the results presented in a classic paper by
V. Basili In 19872 that compared the number of faults detected in four different programs by
74 subjects ranging from advanced to junior, using three testing strategies (code reading,
functional testing, and structural testing).

lyer closed with a discussion of the effectiveness of testing as measured by subsequent fail-
ures in the field. Specifically, he discussed a study of the AT&T 5ESS system conducted by
the University of Illinois, Urbana Campus. Data from eight testing teams was used to build a
database of test, fault, repair, and software functionality. The effort stemmed from observa-
tions that the results of many test teams were not always correlated with results from the field.
The objective was the reduction of testing cost by improving test selection and eliminating re-
dundant tests. An analysis of this database showed that testing effectiveness (the ratio of re-
pairs to test runs) was 2%, testing redundancy (the ratio of the number of failed tests to the
minimum number of tests needed to find the faults) ranged from 4% to 16%, and fault record
effectiveness (the ratio of product repairs to the number of fault reports written) was 35%, in-

2. Basili, V.R. & Seoby, R.W. Comparing the Effectiveness of Software Testing Strategies." IEEE Transactions

on Software Engineering (December 1987): 1278-96.

22 CMU/SEI-94-SR-6



dicating that each fix Involved about 3 faults. A white box analysis was used to Identify the sub-
systems producing the most errors to guide future testing efforts. Efforts are now under way
to automate this procedure.

4.2 Application Lecture: Dr. Yltzak Levendel

Levendel began his lecture with a caveat that he would address only continuous-operation,
real-time systems. He structured his lecture around his experiences during a decade of soft-
ware dependability improvements in telephone switching systems, principally the 5ESS
switch. After observing that he would define a fault as "whatever we end up fixing" and that
data tends to be perverted (i.e., multiple repairs are assigned to one problem), he showed how
the outages per 10,000 lines had decreased substantially from the 5E4 system (5ESS, release
4) to the 5E8 system. He presented 1992 data that contrasted 5ESS switch downtime of 1.6
minutes per 10,000 lines In service with comparable values of 6.3, 20.2, and 28.7 for compet-
ing products.

Levendel then outlined nine problems behind the story of dependability Improvement. First, he
remarked that testers of an early release (5E3) noted that few new failures were encountered
after the test program reached a certain point, leading to a premature convergence of the qual-
ity metric to acceptable levels. It was subsequently discovered that the test program consisted
of a fixed set of tests that were rerun repeatedly; hence as time passed, most of the tests were
reruns of successful tests. More accurate test data was obtained by filtering out the results of
these reruns and concentrating on known problem areas In the system under test.

Second, Levendel displayed a cumulative failure rate curve with a noticeable upward change
in the failure rate after thousands of tests had been completed. He attributed this phenomenon
to excessive reliance on predefined test programs that are not capable of detecting failures
due to new conditions in the system. Levendel stated that the solution In this case was to use
statistical sampling techniques. If the number of passes In the first pass of 10-20 tests in a giv-
en area is above an upper confidence limit, the area is accepted. If the number is below a lower
confidence limit, the area is rejected. Otherwise testing is continued until a subsequent pass
produces results beyond one of the two limits. Levendel observed that the length of time be-
tween the test passes is Important: two weeks worked best at AT&T.

Third, Levendel showed two cumulative test pass rate curves; one with a higher constant pass
rate than the other. He observed that the quality of the underlying product was the same In
both cases; the curves were really measuring the ability of an organization to fix defects (the
higher curve was related to a faster fix turnaround time than the lower curve). As a result, Lev-
endel has dropped cumulative pass rate as a measure of product defects remaining and has
moved to a less "tamperable" metric, the failure opening rate.

Fourth, Levendel observed that statistical testing covers a very small percentage of the soft-
ware In a system. To provide more useful testing results, he recommended keeping a data-
base of tests vs. modules tested to pinpoint weak modules. He suggested that this data could

CMURSEI-94-SR-4 23



be used to cluster bug-fixing activities Into redesign efforts for greater debugging efficiency.
He suggested that this "megadebugging" approach could increase the dependability growth
curve above the curve that would be obtained by one-at-a-time bug fixing.

The fifth problem recounted by Levendel occurred when project managers waited until late in
the testing process before making corrections. This practice not only had a cost disadvantage,
but it also tended to affect the next product. The imposition of a set of ongoing quality gates
(for example, "is the documentation written?") was used to address this problem.

Next, Levendel cautioned the audience not to assume that software is uniform. Here the
testers are well advised to separate the software into smaller, more homogeneous segments.

The seventh problem discussed by Levendel involved excessive reliance on initial fault densi-
ties, resulting in a situation In which the actual fault count exceeds the fault counts that would
be predicted by extrapolating the initial cumulative fault distribution. This problem was solved
by adopting a birth/death reliability model that included a concept of the rate of revisiting an
area in the software for repair.

Levendel's eighth problem was the optimistic results that are often obtained from repetitive au-
tomated testing when the testing does not account for the operational profile of the in-service
system. To solve this problem, AT&T analyzed office data across the USA to create nine ca-
nonical operational profiles. Levendel observed that this was an expensive undertaking be-
cause of the cost of building a large set of automated tests and the cost of setting everything
in the correct initial state for a large environment. In fact, only nine profiles were developed
because of cost limitations.

The final problem posed by Levendel concerned the effect of human variability on quality met-
rics. He exhibited a table showing the number of problems discovered by a group of 51 people.
One person discovered 55 problems (48 real faults), while six of the testers found no prob-
lems. Levendel noted that he had specifically encouraged the testers in this study to increase
their "find" rate; top people had taken the time to visit developers and to learn the code they
were testing, thus developing an Intuitive feel for design weaknesses. Levendel suggested
that this could be used to advantage by understanding software vulnerabilities and focusing
testing on these areas.

Levendel concluded his talk with two open issues In achieving software dependability growth
through testing. First, he posed a challenge to researchers to create a theory of software in-
stability that Identifies design holes and provides techniques and tools to locate them. Last, he
lamented the lack of understanding of software architecture and of software testing. The lack
of software architecture understanding makes it difficult to predict whether fixes In one module
should be accompanied by fixes in other modules. The lack of understanding of software test-
ing is evidenced by the tendency of software In the field to be "trained" by the pattern of use in
the field so that defects In Infrequently used functions remain as "time bombs" indefinitely.

24 CMU/SEI-94-SR-6



Levendel ended his talk with a plea that software follow the lead of other Industrialized do-
mains by modernizing both evaluation and production techniques.

4.3 Panel Discussion

The panel session opened with short talks by the panelists who had not delivered lectures.

Steve Bunch began by recounting his experiences at Motorola with large amounts of vendor-
supplied system software. He indicated that his group could get software with 5,000 - 30.000
bugs and that it takes on the order of two person-days to fix a bug. Thus they had to focus
quality improvement efforts on problem functions and critical code. He noted the difficulty of
"software archeology," the process of finding the original intent of software by inspecting either
the code or the documentation. He also noted that most vendors do not react well to imple-
menting needed changes, especially if the requested changes are not in their product plans.
He recounted the experience of the 88 Open organization, which ran the vendors' own test
suites and obtained only 60% coverage. Although his group uses various kinds of testing for
fault containment, he noted that it is difficult to test In the combinations created by customers.
Bunch did observe the "training effect" mentioned by Levendel where software with known de-
fects nevertheless operated with several years of up time.

Michael Dyer of Loral Federal Systems (formerly IBM Federal Systems) prefaced his remarks
with a description of the applications Implemented by his organization, Including space shuttle
software, air traffic control, and, more recently, systems for the IRS, FBI and Resolution Trust
Corporation. Typically they are large-scale distributed architectures that run 24 hours a day, 7
days a week to serve a diverse set of users. Quality measures include software Inspections,
a controlled Integration process with extensive configuration control, and formal tests to "sell
off" requirements to customers. Formal and statistical methods are used selectively. Generally
these measures have been successful, resulting in functional acceptance by the customer.
Dyer noted that service In the field provides the real data on system reliability. Typical defect
rates average 1 defect per 1000 lines of code; this rate has been reduced to as low as 0.01
defects per 1000 lines in special cases In which the customer was willing to spend an unusual
amount of money on quality, such as the NASA space shuttle code. Dyer observed a need for
better developer knowledge of the real user environment. Also, he stated that the software de-
velopment process should focus more on total errors Instead of discovered errors and needs
software error measures other than defects per thousand lines of code. Finally. Dyer noted a
need for more formal methods for designing code.

Bliss Jensen of the AT&T Global Communications Division described the software his organi-
zation produces for AT&T Definity Systems, a product with about 1.7 million Oines of main pro-
cessor code. New releases of about 100,000 - 500,000 lines of changed code are issued about
once a year. Quality requirements are very high, because of the large exposure of the product
and the critical role the product plays in businesses such as mall order or reservations. Jensen
reported success with an Incremental development adaptation of the cleanroom approach.
Operational profiles that model the customer environment are used to guide automatic gener-

CMU/SEI-94-SR 25



ators of statistical test cases. Other successful approaches included quality factor assess-
ments and risk-based testing. Less successful efforts included automation of test case
execution and the use of process metrics (in contrast to product metrics, which are extensively
used.) The principal deficiencies in the system test area Include the efficient use of regression
tests and the problem of testing interactions with other vendors' products. Software develop-
ment concerns include last-minute design changes and product breakage, where minor prob-
lem fixes result in major outages.

Jacob Abraham of the University of Texas at Austin discussed the three major hardware test-
ing phases: design verification, implementation verification, and manufacturing test. Hardware
design verification evaluates whether the design satisfies specific properties. The current
practice uses massive amounts of simulation (a superscalar system simulation may extend for
billions of clock cycles). Some formal methods are used, typically finite state machine models.
Implementation verification also uses formal methods, ranging from approaches that compare
high-level and low-level models of finite state machines to theorem proving (in the case of the
Viper processor). He observed that most hardware tests are manufacturing tests, which in-
cludes structural and functional tests. Structural tests are based on gate-level stuck-at fault
models, supported by special built-in-test hardware. He noted that hardware stuck-at models
are now being questioned as speeds increase and timing and synchronization faults become
more prevalent.

The first question from the audience asked the panelists how they knew when they had
reached their quality goals. Jansen replied that features affecting a large number of users are
tracked carefully. Products are shipped based on experience with over 40 users and when fail-
ure models predict less than one failure per year. Levendel countered that it is impossible to
accurately predict the future. Dyer observed that the real confirmation of a system's reliability
comes when it is in the field, and that reliability is built up gradually.

In response to a question about experiences using software reengineering tools to analyze as-
built software, Bunch noted that it is hard to apply these tools to operating system software
such as device drivers. They can be of some use in locating suspect areas of a program. Lev-
endel reported trying many reengineering analysis tools in a limited way, but observed that
they have not been very useful. lyer recalled that the AT&T data analysis project spent about
three weeks using tools to analyze failure data, but then spent six months of manual effort to
correlate the failures into clusters and associate them with particular functions.

In response to questions about how well universities train software engineers, lyer replied that
much of the material in his lecture Is included in a graduate-level course in software testing
that supplements two levels of software engineering courses. Levendel lamented that soft-
ware engineers who construct communications software are trained In software topics such as
compiler construction, but have no training in telecommunications. Dyer noted that new hires
are smart and write good code, but fail to understand the constraints of software in the bigger
picture, where 50-100 other programmers may be involved. Bunch recalled that his employees
had learned the importance of testing In the testing class at the University of Illinois.

26 CMU/SEI-94-SR-6



In response to a question on how system downtime is characterized, Levendel explained that
the puincipal measure Is loss of service per office, normalized to 10,000 lines, excluding equip-
ment from other providers and long distance equipment.

In response to a question regarding the effectiveness of embedded tests in maintaining ser-
vice, Levendel described an experiment in which all software error checking was disabled In
switching software that was midway through the development cycle. The system crashed in
five minuts or less. Similar treatment of software ready for delivery resulted in degradation in
about a week. Jansen noted that the software in the Definity system works in much the same
way. He commented that Japanese customers, accustomed to zero defects, were dismayed
to see alarm logs with hundreds of entries.

CMU/SEI-94-SR-6 27



28 CMUISE144-SR4



5 The Tools Fair

The afternoon session of Friday, March 25,1994 was set aside as a tools fair. Attendees were
given an opportunity to demonstrate tools or technologies in a non-commercial setting. Be-
cause of two unrelated hardware glitches, two of the three demonstrations did not come off as
smoothly as they might have. Stephen Cha of the Aerospace Corp. was to demonstrate a tool
for safety-critical system analysis. The computer at Aerospace was unavailable to him be-
cause of a problem with their Internet link. Stephen gave a short overview of his system In-
stead.

Haim Levendel from AT&T Bell Laboratories was to demonstrate an object-oriented system to
develop telephone services. His laboratory computer was also unavailable, necessitating an
abbreviated demonstration done without the remote network services.

Lui Sha from the SEI gave a successful, highly praised, demonstration of the "simplex archi-
tecture," an architecture designed for safety-critical real-time control systems. About 1/3 of the
attendees saw this demonstration.

CMU/SEI-94-SR-6 29



30 CMUISEI-048R



6 Participants' Comments

All of the participants attending the technology exchange were asked for written comments on
the meeting. Over 33% of the attendees provided this feedback. This section summarizes
those comments.

Participants completed a form that asked what their expectations about the exchange were
and how well these expectations were met. For the most part, the participants' expectations
were met (average 4+ out of 5):

"* The meeting allowed participants to find out about potentially useful state-of-

the-art work in dependable software.

"* The discussions helped set an agenda of technology Issues that are ripe for
further exploration.

"* Participants had a chance to meet new colleagues and compare
experiences.

In general, participants found the selected topics to be appropriate (average 4+ out of 5), the
technical depth of talks was right (average 4+ out of 5), and the format was found to be useful
(average 4+ out of 5).

When asked what they liked most and what they liked least about the exchange, the respons-
es were mixed. Some of the attendees really took advantage of the opportunity to meet with
others with similar Interests. Others mentioned that the format was particularly good for the
exchange of information. Each of the sessions was preferred by someone. Individuals select-
ed for special mention included Ram Chillarege (who talked on in-process measurement) and
Jacob Abraham (who provided a hardware counterpoint to the Software Testing and Reliability
session).

Several attendees liked the fact that the exchange did not concentrate only on DoD-related
issues. On the other hand, at least one attendee wished that there had been more direct em-
phasis on the DoD issues.

Negative comments included a wish that the demonstrations had been held earlier in the ex-
change. Also, there was a feeling by some that the three topics covered did not play well to-
gether. In particular, although in-process measurement and software testing and reliability
seem to have some common areas, safety critical systems does not-at least In the eyes of
one participant.

Although most attendees who responded thought the presentations were of the right length
and depth, there was a minority who thought that they covered the areas at too high a level,
and/or were too long-making the speaker less focused.

Nearly all of the respondents would like to see additional exchanges (5- average out of 5).

CMU/SEI-94-SR-6 31



Most participants would attend additional exchanges and would like to see one held within a
year.

Attendees who supplied e-mail addresses have been added to the mailing list "exploder"
depend-sw@sei.cmu.edu, which was created to reach the people who attended the first De-
pendable Software Technology Exchange.

32 CMU/SEI-94-SR-6



7 Discussion

Although rated a success by the attendees, members of the steering committee and some oth-
ers feel that the Dependable Software Technology Exchange has not reached its original goal
of causing practitioners to learn what is new from the researchers and allowing researchers to
learn what doesn't work in practice and what real-world problems must be solved.

The practitioners do attend-although not in the numbers we would like (attendance was off
about 15% this year, at least partially due to the cancellation of the Follow-on Early Warning
System (FEWS) Project. The problem is that, although the talks were well coordinated this
year, the practitioner speakers tend to present success stories rather than telling what re-
search worked and what research was really needed.

Perhaps this can be corrected by better instructions to the practitioner speakers. But the best
way for this series of technical exchanges to achieve its goal would be to attract more practi-
tioners with diverse points of view. Although targeted at these practitioners, it seems that some
sort of forcing function is needed to get the broad attendance we seek.

For instance, government contract monitors could inform their contractors that two people
should be sent to the annual exchange so that the contractors will become more aware of the
latest technology. The cost of attending should be billable to the government above the cost
of the contract. Similarly, government regulatory agencies (e.g., the FAA, NRC) might encour-
age people In their industries to attend.

A change of format for the Dependable Software Technology Exchange might also be helpful.
The one-hour talks tend to be unfocused. It has been suggested that 45 minutes (without
questions) might be a more appropriate length. Also, the panelists, while providing somewhat
diverse views, seem to take up too much of the allotted time with their presentations. For the
next exchange, it has been proposed that the panelists be given essentially no time for an in-
divJual presentation (though they are free to put up a slide or two created in response to the
procending talks). This, combined with lengthening the panel to 90 minutes, should give plenty
of time for discussion.

CMU/SEI-94-SR-6 33



34 GMU/SEI-94-SR-6



8 List of Attendees

Jacob Abraham Ching-Yun Chen
Professor Senior Engineer
University of Texas at Austin Union Switch & Signal, Inc.
ENS 433A 5800 Corporate Drive
Austin, TX 78712 Pittsburgh, PA 15237
Phone: (512) 471-8983 Phone :(412) 934-2119
Fax: (512) 471-8967 Fax: (412) 934-2190
E-Mail: jaa@cerc.utexas.edu E-Mail: cyc@switch.com

David J. Alberico Ram Chillarege
Chief, Software Systems Safety Manager Center for St ,"f Quality
U. S. Air Force IBM Corporation
9700 Avenue G, S.E. Mail Stop H4 A14
Suite 250B P.O. Box 704
Kirtland AFB, NM 87117-5670 Yorktown Heights, NY 10598
Phone: (505) 846-1172 Phone: (914) 784-7596
Fax: (505) 846-2721 Fax: (914) 784-6201
E-Mail: albedcd%smpts@afsal.saia.af.mil E-Mail: ramchill@watson.ibm.com

Mario R. Barbacci Elmer Collins
Program Director Sr. Member of Technical Staff
Software Engineering Institute Sandia National Laboratories
Carnegie Mellon University P.O. Box 5800
5000 Forbes Avenue Albuquerque, NM 87185-0830
Pittsburgh, PA 15213-3890 Phone: (505) 844-1869
Phone: (412) 268-7704 Fax: (505) 844-9037
Fax: (412) 268-5758
E-Mail: mib@sei.cmu.edu John Cosgrove

President
Steve Bunch Cosgrove Computer Systems, Inc.
Chief Scientist 7411 Earldom Ave.
Motorola Inc. Phaya Del Rey, CA 90293-8058
1101 East University Avenue Phone:(310) 823-9448
Urbana, IL 61801 Fax: (310) 821-4021
Phone: (217) 384-8515 E-Mail: jdc@textron.com
Fax: (217) 384-8550
E-Mail: srb@urbana.mcd.mot.com Michael K Daskalantonakis

Manager, Software Improvement
Stephen Cha Motorola Inc.
Member of Technical Staff Mall Stop: OE321
The Aerospace Corporation 6501 William Cannon Dr., West
2350 E El Segundo Boulevard Austin, TX 78735
El Segundo, CA 90245-4691 Phone: (512) 891-2276
Phone: (310) 336-7977 Fax: (512) 891-3161
Fax: (3 I0) 336-5833 E-Mail: dask@mot.com
E-Mai: cha@aero.org Jon )ehn

James V. Chelini Sr. Technical Staff Member
Principal Engineer Loral Federal Systems
Raytheon Company 9231 Corporate Boulevard
528 Boston Post Road Rockville, MD 20850
Sudbury, MA 01776 Phone: (301) 640-2912
Phone: (617) 440-3288 Fax: (301) 640-3103
Fax: (508) 440-2617 E-Mail: dehn@vnet.ibm.com
E-Mail: chellnij@tlf1 74.ed.ray.com

CMU/SEI-94-SR-6 35



Mike DeWalt Thomas L. Gilchrist
National Resource Specialist Senior Software Engineer
Federal Aviation Administration Boeing Computer Services
1601 Lind Avenue, S.W. P.O. Box 24346
Renton, WA 98055 MS 67-ET
Phone: (206) 227-2762 Seattle, WA 98124-0346
Fax: (206) 227-1181 Phone: (206) 234-4865Fax: (206) 234-1499
Jorge L. Diaz-Herrera E-Mail: tomg@halcyon.com
Sr. Member of Technical Staff
Software Engineedng Institute Walter Heimerdinger
Camegie Mellon University Fellow
5000 Forbes Avenue Honeywell Technology Center
Pittsburgh, PA 15213-3890 3660 Technology Drive
Phone: (412) 268-7636 MN 65-2200
Fax: (412)268-5758 Minneapolis, MN 55418-1006
E-Mail: jldh@sei.cmu.edu Phone: (612) 951-7332Fax: (612) 951-7438
Kevin Driscoll E-Mail: walt@src.honeywell.com
Staff Scientist
Honeywell Technology Center M. Frank Houston
3660 Technology Drive Director
M/S MN65-2500 Weinberg, Spelton & Sax, Inc.
Minneapolis, MN 55418-1006 3029 Brookwood Road
Phone: (612) 951-7263 Ellicott City, MD 21042
Fax: (612) 951-7438 Phone: (410) 461-6608
E-Mail: dnscoll@src.honeywell.com Fax: (410) 459-8381

Michael Dyer E-Mail: houston@ftd.navy.mil
Loral Federal Systems Norman R. Howes
9211 Corporate Boulevard Research Staff Member
Rockville, MD 20850 Institute for Defense Analyses
Phone: (301) 640-4211 1801 N. Beauregard Street
Fax: (301) 640-4750 Alexandra, VA 22311
E-Mail: mdyer@vnet.ibm.com Phone: (703) 845-3533

Lynn S. Elliott E-Mail: howes@ida.org
Manager of Software Engr. John J. Hudak
Eli Ully and Company Carnegie Mellon University
4100 North Hamline Avenue 104 Doray Drive
Arden Hills, MN 55112-5798 Pittsburgh, PA 15237
Phone: (612) 582-2842 Phone: (412) 268-3368
E-Mail: elliot_lynn-s@lilly.com Fax: (412) 268-6960E-Mall:Ujh@cec.cmu.edu
Armen Gabrielian
President Michelle M. Hugue
UniView Systems Director, Applied Research
1192 Elena Privada Trident Systems, Inc.
Mountain View, CA 94040 10201 Lee Highway, Ste. 300
Phone: (415) 968-3476 Fairfax, VA 22030
Fax: (415) 968-3476 Phone: (301) 262-5140
E-Mail: armen@well.sf.ca.us Fax: (703) 273-6608

E-Mail: meesh@nemo.cs.umd.edu

36 CMU/SEI-94-SR-6



Ravi lyer Gary Koob
University of Illinois Chief of Naval Research
Coordinated Science Lab. U. S. Navy
1308 West Main Street 800 N. Quincy Street
Urbana, IL 61801 Ballston Tower One
Phone: (217) 333-9732 Arlington, VA 22217-5660
Fax: (217) 244-5686 Phone: (703) 696-0872
E-Mail: iyer@crhc.uiuc.edu Fax: (703) 696-0934

E-Mail: koob@itd.nrl.navy.mil
Bliss Jensen
AT&T Y. Haim Levendel
11900 Pecos Street Technology Development Director
Denver, CO 80234-2703 AT&T Bell Laboratories
Phone: (303) 538-4255 263 Shuman Boulevard
Fax: (303) 538-3643 Room IZ-108
E-Mail: abj@elvis.dr.att.com Naperville, IL 60566-7050

Phone: (708) 979-1310
Stephen B. Johnson Fax: (708) 979-1434
Research Associate E-Mail: yhl@ihlpl.att.com
University of Cincinnati
2912 33rd Avenue, N.E. David R. Luginbuhl
St Anthony, MN 55418 Software & Sys. Program Manager
Phone: (612) 781-2898 Air Force Office of Scientific Research
Fax: (612) 781-3099 AFOSR/NM
E-Mail: johnO730@gold.tc.umn.edu 110 Duncan Avenue, Ste. B1 15

Boiling AFB, DC 20332
Judith Klein Phone: (202) 767-5028
Senior Programmer Fax: (202) 404-7496
Loral Federal Systems E-Mail: luginbuh@afosr.af.mil
9231 Corporate Boulevard
Rockville, MD 20850 Michael R. Lyu
Phone: (301) 640-2790 Member of Technical Staff
Fax: (301) 640-3103 Bellcore

445 South Street
John C. Knight Morristown, NJ 07960-1910
Professor Phone: (201) 829-3999
University of Virginia Fax: (201) 829-5981
Thornton Hall E-Mail: lyu@bellcore.com
University of Virginia
Charlottesville, VA 22903 Joseph R. Marshall
Phone: (804) 982-2216 Advisory Engineer
Fax: (804) 982-2214 Loral Federal Systems
E-Mail: knlght@virginia.edu 9500 Godwin Drive, MS 018

Manassas, VA 22110
Jail Koistinen Phone: (703) 367-9411
Ellendel/Stockholm University Fax: (703) 367-9440
Ellendel Box 1505 E-Mail: joe.marshall@vnetibm.com
12525 Atlusjo
Stockholm, Roy Maxion
SWEDEN System Scientist
Phone: +46-8-7274359 Carnegie Mellon University
Fax: +46-8-7274220 5000 Forbes Avenue
E-Mail: euajak@cua.vicsson.se Pittsburgh, PA 15213

Phone: (412) 268-7556
Fax: (412) 681-5739
E-Ma1: maxion@cs.cmu.edu

CMU/SEI-94-SR-6 37



John A. McDermid Fred Schneider
University of York Professor
Heslington Cornell University
York, North Yorkshire, Y01 5DD Upson Hall
UNITED KINGDOM Ithaca, NY 14853
Phone: +44-0-904-432782 Phone: (607) 255-9221
Fax: +44-0-904-432708 E-Mail: fbs@cs.comell.edu
E-Mail: jam@minster.york.ac.uk Lui Sha

Cuong Nguyen Project Leader
Consulting Engineer Software Engineering Institute
Union Switch & Signal, Inc. Camegie Mellon University
5800 Corporate Drive 5000 Forbes Avenue
Pittsburgh, PA 15237 Pittsburgh, PA 15213-3890
Phone: (412) 934-2184 Phone: (412) 268-5875
E-Mail: ccn@switch.com Fax: (412) 268-5758

Suman Purwar E-Mail: Irs@sei.cmu.edu

Assistant Professor Bassam Shanti
Wheeling Jesuit College Assistant Professor
316 Washington Avenue Wheeling Jesuit College
Wheeling, WV 26003 316 Washington Avenue
Phone: (304) 243-2340 Wheeling, WV 26003
E-Mail: sumanp@acc.wjc.edu Phone: (304) 243-2302

Arthur Robinson Roger Sherman
President Director of Testing
System Technology Development Corp Microsoft Corporation
1035 Sterling Road, Ste. 101 1 Microsoft Way
Hemdon, VA 22070 Redmond, WA 98052
Phone: (703) 476-0687 Phone: (206) 936-3447
Fax: (703) 478-0689 E-Mail: rogersh@microsoft.com
E-Mail:wk01811@worldlink.com Daniel P. Siewiorek
John Rushby Professor
Program Director Carnegie Mellon University
SRI International 5000 Forbes Avenue
333 Ravenswood Avenue Pittsburgh, PA 15213-3890
Menlo Park, CA 94025 Phone: (412) 268-2570
Phone: (415) 859-5456 Fax: (412) 681-5739
Fax: (415) 859-2844 E-Mail: dps@cs.cmu.edu
E-Mail: rushby@csi.sri.com Mark 1. Snyder

Richard C. Scalzo Space Systems Software Engineer
Mathematician Phillips Lab
Naval Surface Warfare Center VTES (Space Software Concepts)
Code A44 Kirtland AFB, NM 87117
10901 New Hampshire Ave. Phone: (505) 246-8986
Silver Spring, MD 20903-5640 Fax: (505) 246-2290
Phone: (301) 394-2926 E-Mail: snyderm@plk.af.mil
Fax: (301) 394-1164
E-Mail: rscalzo@relay.nswc.navy.mil

38 CMU/SEI-94-SR-6



Steven Spielman Chris Walter
Principal Engineer Manager, Systems
Raytheon Company Allied-Signal
528 Boston Post Road 9140 Route 108
Sudbury, MA 01776 Columbia, MD 21045
Phone: (508) 490-2352 Phone: (410) 964-4082
Fax: (508) 440-2337 Fax: (410) 992-5813
E-Mall: steven._Lspielman@ccmall.ed.ray.- E-Mail: chrls@batc.allled.com
com

Charles B. Weinstock
Jay K. Strosnider Sr. Member of the Technical Staff
Associate Professor Software Engineering Institute
Carnegie Mellon University Carnegie Mlon University
5000 Forbes Avenue 5000 Forbes Avenue
Porter Hall B17 Pittsburgh, PA 15213-3890
Pittsburgh, PA 15213-3890 Phone: (412) 268-7719
Phone: (412) 268-6927 Fax: (412) 268-5758
Fax: (412) 268-3890 E-Mail: weinstock@sei.cmu.edu
E-Mail: jks@usa.ece.cmu.edu

Tom Wheeler
NeeraJ Sur Member of Technical Staff
MTS The MITRE CorporationAllied Signal Research Center 202 Burlington Rd., IM/S B244
9140 Old Annapolis Road Bedford, MA 01730-1420
Columbia, MD 21045 Phone: (617) 271-2589
Phone: (410) 964-4157 Fax: (617) 271-2911
Fax: (410) 992-5813 E-Mail: twheeler@mitre.org
E-Mail: suri@batc.allied.com Bing Yu
Robert S. Swarz Senior Engineer
Director, Reliability & Main. Ctr. Union Switch & Signal, Inc.
The MITRE Corporation 5800 Corporate Drive
202 Burlington Road Pittsburgh, PA 15237
Bedford, MA 01730-1420 Phone: (412) 934-2164
Phone: (617) 271-2847 Fax: (412) 934-2190
Fax: (508)358-1124 E-Mail: bingyu@swltch.com
E-Mail: rswar'z@mitre.org

Gary J. Vecellio
Lead Scientist
The MITRE Corporation
7525 Colshire Drive, MS W624
McLean, VA 22102
Phone: (703) 883-5696Fax: (703) 883-1339
E-Mail: veoellio@mitre.org

Dolores R. Wallace
Computer Scientist
National Institute of Stds. & Tech.
Technology Building, Rm. B266
Gaithersburg MD 20899
Phone: (301) 975-3340
Fax: (301) 926-3696
E-Mail: wallace@sst.ncsl.nlst.gov

CWU/SEI.94-S:4 39



40 CLMU/8E144.SR4



REPORT DOCUMENTATION PAGE
I&. REPORT BEEiRr CASCATM~ Lb urrmzciwi RABKINa

Unclassified None

2L. SECURIT C-LASSIFICTioN ABHOR"T 3. DISTRIBLTIMOAVALABILIT OFREPORT
N/A Aprved for Public Release

~ DE ~ VNODINOsam~zz Dstriut-n Unlimited

4, PEMINORMORGAMMATION REPORT NUMBU(S) S. MONTFORIN4 ORGAMATION REPRT NUMBERMS

CMU/SEI-94-SR-6

G&. NAME OF PERPOOMM OROANIZATON W OFICEK SYMBOL 7@. NAME OF MO~flVD4 WORANWATION

Software Engineering Institute ofWhb) SEI ,Joint Program Office
SEI

E.ADDRESS (cizX A@ ad up cGd&) 7h ADDRESS (ao saim nd zp cob.)

Carnegie Mellon University HO ESC/ENS
Pittsburgh PA 15213 5 Eglin Street

Hanscomr AFB, MA 01731-2116

I&NAME OFFUND~INOSPONSOWNO F& OFIEFbIO ROCUREM~T INSTRUMMN IDENTIFICATON NUhWXR
ORGAVAIN O SPPUCA") Fl196289000003

SEt Joint Program Office ESC/ENS
le. ADDRESS (cimy sms. aid up cads)) 10. SOURC OF FUNDING NOS.

Carnegie Mellon University PROGRA PMoBCT A WORK UMOT
Pittsburgh PA 15213 63756E0 N/A N/A N/A

11. 1TI1Z Gadnd. -w~ QCmwWAnd

Second Dependable Software Technolg Exchange
12. PERSONAL AUTHIOR(S)

Charles B. Weinulocit, SSl and Waller HelmerdigrW, Honeywell Technology Center
11L. TYPE OF REPORT 13b. TIME COVRD14. DMT OF BWO Lym@4 =ask day) 1S. PAG COUN~T

Fina IFOM T I une 99440 pp.

17. CO!AT CODES _______IS. SUBJMERt1MS ea. wn ~aanuymd" Idmty byok Inb

FIED ROP SB.00 dpendlbl wm B~m sowre Sawe Cdilcal
______ _____ ______Dependable Software Technology Exchange Testing

_____ ______krxoess Measuremesnt

19. A~V '(COAN=m ammus it auin md* by ~wkmwiW
On March 24 and 25,1994, the Open Al~ttrbt Engineering Proje, hoetd ithe Second Dependable Software Tech-

Exoyjchang. The exchange, sponsored by te = Force L MorAtole, the Off icedo Naval Resewvc1 and
theAi Frc SoendMisil SstmsCenter, brought NMIhe reacher and system developers pov~dng an

oppeorlunk e for the researchers .tolanthe reedsofth developers an o h e ý t ler aotechrclue
bftinestgaed y he esarcer. TismWsummarizes what traspre at thermeetng

20. DISTRIBUflONAAVAEABRMr OF ABSTRACT 21. ABSTRACT SCtIRIIY C..ASSINC~flON
UNCLSSRWWWED SANE AS RNOl vnC umsm S Unclassified, Unlimited Distribution

n..N A ME O F RESFONSZDZZ ND VIDuAL 22 .T LE H N NUNIuag j0r m ak d amss and onr- r SY N
Thomas R. Miller, U Col, USAF(4226-73 SE SQ

DDRM 147XIS55M EITION orI UN 73 S 0001 UOIZIICAS



U *.� I _________

-� - in.Wi� 19


